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We analyzed the World Color Survey (WCS) color-naming data set
by using k-means cluster and concordance analyses. Cluster anal-
ysis relied on a similarity metric based on pairwise Pearson corre-
lation of the complete chromatic color-naming patterns obtained
from individual WCS informants. When K, the number of k-means
clusters, varied from 2 to 10, we found that (i) the average
color-naming patterns of the clusters all glossed easily to single or
composite English patterns, and (ii) the structures of the k-means
clusters unfolded in a hierarchical way that was reminiscent of the
Berlin and Kay sequence of color category evolution. Gap statistical
analysis showed that 8 was the optimal number of WCS chromatic
categories: RED, GREEN, YELLOW-OR-ORANGE, BLUE, PURPLE,
BROWN, PINK, and GRUE (GREEN-OR-BLUE). Analysis of concor-
dance in color naming within WCS languages revealed small
regions in color space that exhibited statistically significantly high
concordance across languages. These regions agreed well with five
of six primary focal colors of English. Concordance analysis also
revealed boundary regions of statistically significantly low con-
cordance. These boundary regions coincided with the boundaries
associated with English WARM and COOL. Our results provide
compelling evidence for similarities in the mechanisms that guide
the lexical partitioning of color space among WCS languages and
English.
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Languages differ greatly in how basic color terms are used to
name colors. Until the late 1960s, the prevailing view was that

differences in color naming occur as a result of cultural factors,
which were thought to operate through language to influence
strongly individuals’ awareness of their chromatic environment
(e.g., ref. 1). Then Berlin and Kay (2) advanced a very different
view, based on their review of 98 world languages, 20 of which
they studied empirically. Although Berlin, Kay, and their col-
leagues (3–5) have modified some details of their original
proposals over the years, two central principles remain: (i) a
universal set of processes constrains the lexical encoding of
color, and (ii) nearly all languages partition color space lexically
into a modest number of categories, which are drawn from a
limited set of allowable color categories, including those cate-
gories found in English plus certain composite combinations of
them. For the past 35 years, these ‘‘universalist’’ principles have
shaped the debate regarding how the chromatic properties of the
environment become part of the language and thought of a
culture.

In the years that followed Berlin and Kay’s landmark mono-
graph, many scholars were critical of the small number of (mostly
bilingual) subjects and the modest number of languages chosen
for empirical study (for review, see ref. 6). Partly in response to
this difficulty, Kay and his coworkers collected a massive data-
base of color-naming data and focal color data known as the
World Color Survey [WCS; (ref. 5)]. The test materials consisted
of 330 achromatic and colored chips selected from the Munsell
Color System, as shown in Fig. 1a. The WCS contains color
names supplied by 2,616 informants of 110 mostly unwritten
languages spoken by preindustrial societies. Color naming in
WCS languages is thought to be relatively uncontaminated by
contact with highly industrialized cultures whose color lexicons

closely resemble that found in English. Thus, comparison of
WCS and English patterns in color naming provides a strong test
of the universalists’ claims.

Kay and his coworkers have used the WCS to revisit the
question of universal constraints on color naming. However,
rather than analyzing the full distributions of chips given a
particular name by informants, they confined their studies to
single-color surrogates for these distributions. The surrogates
studied by Kay and his associates were either (i) the color naming
‘‘Lab-centroids, ’’ the averaged CIE L*a*b* coordinates of each
color-naming pattern (6), or (ii) the ‘‘focal colors’’ selected by
informants as the best examples of each color-naming pattern
(7). In each case, Kay and his associates found evidence for
clustering of the surrogates in regions of color space that
approximate the locations of English Lab-centroids or focal
colors.

As compelling as these results are, there remain issues re-
garding the universalist claims that have not been resolved by
previous analyses of the WCS database. Among these relation-
ships is that between the surrogates (the Lab-centroids and the
focal colors) and the color-naming patterns on which they are
based. The surrogates discard much of the information con-
tained in the full color-naming patterns, information that could
conceivably challenge the universalist view. Another issue is the
precise number of color categories. Do WCS informants reveal
as many clusters of color names as exist in English? Do they
reveal fewer? Do they reveal more?

For the present study, we conducted two analyses of the WCS
color-naming data set to test the universalist claims summarized
above. In our first analysis, we examined the clustering of
color-naming patterns, treating each pattern obtained from each
informant as a separate observation. We were particularly
interested in how cluster membership varied as we manipulated
the number of clusters, K, into which the color-naming patterns
of the WCS were partitioned.

We restricted our analysis to those color-naming patterns that
were wholly contained within the 320 chromatic chips of the
WCS chart, excluding all patterns that included any of the 10
achromatic chips (see Fig. 1a). We did so because an achromatic
pattern, by definition, may differ from a chromatic pattern by
only a single chip (black, white, or gray) drawn from a region of
color space disjoint from those regions containing the chromatic
chips. We were concerned that our clustering methods would be
insensitive to these small but possibly (from a theoretical point
of view) important differences in color naming.

Each name deployed by each WCS informant produced a
corresponding color-naming pattern, which we encoded as a
320-element binary vector (see Fig. 1 b and c). These vectors
were then subjected to k-means cluster analysis, in which color-
naming vectors were assigned to a predetermined number of
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clusters, K, using a similarity metric based on Pearson correla-
tion. The aims of the cluster analysis were to see whether the
patterns, like their surrogates, tend to group together and to
assess objectively how many groupings there are.

In the second analysis, we tested for universal constraints on
color naming by exploiting a well known aspect of color-naming
data: informants who speak the same language often disagree on
what to name a particular WCS chip. We hypothesized that if
there are universal constraints on the lexical partitioning of color
space, then some colors might be universally more (or less)
salient than others, and we should therefore observe regularities
in concordance across the WCS color chart, regardless of the
language spoken.

Results
Cluster Analysis. Fig. 2 shows grayscale images of average WCS
color-naming vectors derived from our cluster analysis for 2 �
K � 10. The vector elements of each average are arranged in the
two-dimensional coordinate system of the WCS color chart. The
grayscale value of each vector element is related to the frequency
with which the corresponding WCS color sample is included in
the set of color-naming patterns assigned to a particular cluster
by our k-means analysis. The grayscale images in Fig. 2 have been
normalized for clarity so that each average color-naming pattern
has a maximum grayscale value of 1.0 (white). The original data
(e.g., Fig. 1b) had values of either 0 or 1 on each of the 320
dimensions, based on our binary encoding of color naming. In
contrast, the averages shown in Fig. 2 are the average locations
in 320-space of all of the color-naming patterns included in each
cluster. Therefore, they generally have values other than 0 and
1, and in many cases, individual chips are associated with more
than one cluster. The number above each grayscale image
representing a k-means cluster corresponds to the fraction of
patterns (of a total of 14,236 patterns) assigned to that cluster.
Therefore, the sum of all fractions in a particular column in Fig.
2 is 1.0.

Two features of these results stand out. First, regardless of the
value of K, the patterns generally correspond to readily identi-
fiable English categories (right column in Fig. 2) or their
composites; and second, the changes in the average patterns as
K varied are generally well characterized by a binary tree
structure.

Let us compare the average color-naming patterns with the
corresponding English color categories. The categories obtained

for K � 2 are readily described as WARM (including red, yellow,
orange, and pink) and COOL (including blue and green). For
K � 3, we see COOL, red-plus-pink, and yellow-plus-orange
patterns. As K is increased to 6, BLUE and then GREEN
emerge. At the level of 8 clusters, we see aggregate color-naming
patterns that approximate all of the English color-naming pat-
terns, with two exceptions: patterns corresponding to the English
terms orange and yellow are not resolved but are represented as
a composite YELLOW-OR-ORANGE category, and, in addi-
tion to GREEN and BLUE, the WCS also shows the composite
category GRUE (GREEN-OR-BLUE). It is also worth noting
that the English red and purple, for example, are more localized
than are their WCS counterparts. At K � 10, RED splits into a
broad, composite category encompassing red and pink plus a
more localized, English-like red. At K � 10, we also see an
amorphous cluster (labeled OTHER in Fig. 2) that cannot be
described as a composite of English chromatic color-naming
patterns. The average pattern associated with this amorphous
cluster is composed of chips consisting mainly of high reflec-
tance, desaturated colors, so it might seem reasonable to label
this average pattern as achromatic. Recall, however, that we
specifically excluded achromatic color-naming patterns from
analysis. Increasing K from 10 to 12 further increased the number
of these amorphous patterns (not shown in Fig. 2).

The second feature of the diagram in Fig. 2 is its diverging
binary tree structure: as K increases from 2 to 10, we see an
unfolding of successively more subordinate categories. The only
violations of this binary tree structure occurred when K changed
from 3 to 4 and from 9 to 10 (shown by dashed diagonal lines in
Fig. 2), where the graphs converge rather than diverge. Notice
also that the color-naming patterns observed at a given level of
the tree tend to persist as K is increased, which shows that our
classification algorithm is robust. The general conclusions we
draw from our k-means analysis will not depend critically on the
precise value of K; we find evidence for English-like categorical
structure across a wide range of values of K.

The k-means cluster analysis will generate a solution for any
prespecified number of clusters, K, ranging in value from 1 to the
total number of observations. Can we estimate an optimal value
for K? We did so by using the gap statistic of Tibshirani et al. (8),
which measures, as a function of K, the log(ratio) (the ‘‘gap’’) of
the degree of clustering of the WCS data to that obtained from
a simulated uniform (cluster-free) reference distribution. The
results of our gap analysis shown in Fig. 3 indicate an optimal
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Fig. 1. WCS stimuli and color name encoding. (a) The 330 Munsell chips in the WCS color chart. Of the chips, 320 consist of 40 hues spanning the color circle
(arranged horizontally), each printed in 8 values (arranged vertically). An additional 10 chips are achromatic colors (sidebar). (b) Bitmap (black � 0; white � 1)
illustrating encoding of a chromatic color-naming pattern into a binary-valued vector containing 320 elements, one for each chromatic chip in the WCS color
chart. The pattern was obtained from a Yacuna-speaking (Columbia, South America) WCS informant (informant 22). (c) Example bitmaps illustrating colors called
red, green, blue, and yellow, respectively, by an English-speaking informant.
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value for the WCS data of K � 8. It is optimal in the sense that
increasing the number of clusters beyond 8 does not reduce
gap(K) by a statistically significant amount (see Methods).

Although the gap statistic indicates that 8 is the optimum
cluster number, the gap statistic values are modest (�0.06 log
unit or less), indicating that the color-naming patterns do not all
cluster tightly around their respective cluster means. This feature
of the WCS color naming is illustrated in Fig. 4, which shows
color-naming patterns classified as RED by our cluster analysis.
The left column shows individual color-naming patterns with
dissimilarities calculated by Pearson correlation that fell close to

the RED cluster average. Those patterns in the middle and right
columns had, respectively, intermediate and large dissimilarities
with respect to the RED cluster average.

The reader may be tempted to extend the analysis for cluster
numbers beyond K � 8 in hopes of finding additional clusters; for
example, one might wish to find a superordinate WARM cluster
that would include the larger RED color-naming pattern occa-
sionally seen in the WCS (arrow in Fig. 4). That temptation must
be resisted. The gap analysis shows that one would not be
accounting for significantly more of the variance than in the K �
8 analysis. Furthermore, expanding the analysis beyond 8 clus-
ters reveals increasingly many unanticipated categories, includ-
ing the amorphous OTHER categories (lower right corner of
Fig. 2) that would also have to be explained somehow, along with
the well defined composite categories that might emerge.

Concordance Analysis. In this analysis, we were interested in
color-naming concordance, the extent to which informants of a
language agree on how each of the WCS color chips should be
named (see Methods). We calculated the concordance within
each language in the naming of each chip, and then we looked
at the average concordance for all 110 WCS languages. Unlike
the cluster analysis described above, we did not restrict our
analysis to the chromatic chips but also included color-naming
patterns that contained any or all of the ten achromatic chips on
the far left side of Fig. 1a.

Fig. 5a shows the mean concordances for each of the chips,

Fig. 2. Results of the k-means cluster analysis. The panels in each column indicate the average color-naming patterns associated with each of K clusters (K �
2–10) compared with English (far right). Cluster labels in are uppercase letters; English labels are in italics. The number above each grayscale image indicates the
fraction of 14,236 color-naming patterns that fell into the indicated k-means cluster.
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Fig. 3. Graph of gap statistic (�1 S.E.) as a function of the number of k-means
clusters. The arrow points to the optimal solution. For details, see Methods.
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coded as grayscale values relative to the grand mean of 0.67
(SD � 0.05). Concordance is clearly nonuniform across the color
chart, showing areas of relatively high and low concordance.

We compared each mean shown in Fig. 5a with a lower bound
on the mean concordance calculated by assuming that the color
names available to WCS informants are assigned by them at
random to each of the chips. If informants of a language use
available words indiscriminately, then, by chance alone, some
words are more likely than others to be used to name a particular
chip in the WCS color chart. These maxima in word usage will
occur randomly across the WCS color chart. Simulation of this
process produced a grand mean concordance of 0.178 (n � 110
languages; SD � 0.004) for all 330 chips. We used a t test,
corrected for multiple comparisons, to compare the 330 mean
concordances with the lower bound grand mean and found that
all individual means were statistically significantly above the
lower bound (df � 419; P � 0.0001).

We also used a t test, corrected for multiple comparisons, to
compare the 330 mean concordances with the observed grand
mean. Fig. 5b shows the chips that are significantly above (white)
or below (black) the grand mean concordance level at the P �
0.01 confidence level. The narrow black regions of below-
average concordance divide the color chart coarsely into two
broad regions of average or above-average concordance that
correspond roughly to warm and cool colors. The white islands
of high concordance correspond closely to five of the six English
focal colors related to five of the six Hering primaries: black,
white, red, green, and yellow (dots and asterisks). An interesting
exception to this rule is the blue region of the WCS chart, which
did not reach statistically significant concordance (P � 0.05). We
have argued elsewhere that this occurrence may be the result of
heavy exposure to UV-B solar radiation in regions where these
languages are spoken. UV-B can have phototoxic effects on the
ocular lens and�or short-wavelength-sensitive cones that reduce

the blueness of nominally blue chips (9, 10). For a contrary view,
see refs. 11 and 12.

The reader may be puzzled by apparent discrepancies between
the results of the k-means and concordance analyses. Recall that
the k-means analysis excluded the achromatic chips, so the
k-means analysis cannot reveal BLACK, WHITE, or GRAY.
Concordance is low in some regions of color chart (e.g., pink,
brown, purple) around which color-naming patterns tend to
cluster because the concordance analysis is at the level of the
language, and it explicitly considers what color name each
informant uses. In contrast, the k-means analysis is at the level
of the individual color-naming pattern, and it explicitly does not
consider color names at all. The concordance results suggest that
certain colors (e.g., red, green, and yellow) are particularly
salient to WCS informants, regardless of what language they
speak, and they are named in a consistent way. Names for
secondary colors (e.g., pink, brown, and purple) are apparently
used in a less consistent way, on average, even though the
patterns of color naming associated with these colors tend to be
similar across languages.

Discussion
We have used cluster and concordance analyses to show that the
statistical properties of color naming by WCS informants reveal
universal constraints on how cultures lexically partition color
space. In our cluster analysis, we introduced the technique of
Pearson correlation as a similarity metric so that we could
analyze each informant’s patterns of color naming rather than
surrogates for these patterns. We restricted our cluster analysis
to chromatic colors (excluding black, white, and gray), and we
showed that WCS clusters correspond to recognizable English
color categories or combinations of English categories over a
wide range of cluster numbers. Our analysis also showed that the
optimum number of WCS chromatic color categories is 8: RED,

Fig. 4. Sorted order of relative within-cluster dissimilarities, �, for all patterns assigned to RED or PINK clusters. � is defined as the logarithm of the ratio of
dwithin (dissimilarity of a pattern from its within-cluster mean) to dnext (dissimilarity of that pattern from mean of next-nearest cluster). For points to the left of
the vertical dashed line, � � �0.3 (factor of 2.0). (Insets) Examples of color-naming patterns. (Insets Left) Close matches to cluster mean (red, �0.85 � � � �0.8;
pink, �0.6 � � � �0.55). (Insets Center) Intermediate matches (�0.35 � � � �0.3). (Insets Right) Poor matches (�0.15 � � � �0.1). The arrow points to a diffuse
warm color-naming pattern, which was part of the red cluster for K � 8.

Fig. 5. Concordance analysis results. (a) Grayscale diagram of the concordance for each of 330 chips in the WCS color chart, averaged across the 110 WCS
languages. Arrows divide warm and cool colors. (b) Statistical significance compared with the global mean (0.67 � 0.06) by t tests corrected for multiple
comparisons (df � 419, P � 0.01) (21). Concordance: gray, not different from the global mean; white, significantly above the mean; or black, significantly below
the mean. Focal colors in English: circles, ref. 2; asterisks, ref. 22.
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PINK, BLUE, GREEN, BROWN, PURPLE, YELLOW-or-
ORANGE, and GRUE (GREEN-OR-BLUE). Our concor-
dance analysis showed the greatest average concordance in
regions corresponding to five of the six Hering color-opponent
primaries: red, yellow, and green, black and white. Concordance
analysis also showed two major fault lines of low concordance in
the WCS color chart, indicating the existence, among WCS
informants, of a fundamental psychological distinction between
the English composite color categories WARM and COOL.

Central-Color Analyses vs. Color-Naming Patterns. Previous work by
Kay and his colleagues relied on analyses in which each color-
naming pattern was reduced to a single central color: either the
focal color (2, 7) or the Lab-centroid (6). In contrast, Roberson
et al. (13) have argued that color-naming patterns emerge from
particularly salient color distinctions drawn at the boundaries
between colors rather than from focal examples. Previous work
by Regier et al. (7) rejects this hypothesis by showing greater
clustering for WCS focal colors (which do not explicitly depend
on category boundaries) than for the Lab-centroids derived from
the corresponding color-naming patterns (which do depend on
boundary locations). WCS focal colors also tended to cluster
around Hering primary colors. Our concordance study showed
high concordance in regions of the color chart that are associated
with five of six Hering primaries. We infer that high concordance
across WCS languages indicates that colors in these areas of the
color chart may be universally highly salient. Furthermore, we
also find boundary regions of statistically significant low con-
cordance, and hence, low salience, which can occur only if (i)
individual languages have consistently low concordance at some
boundary regions, and (ii) these boundary regions are in ap-
proximately the same location in most languages. These two
findings are in agreement with the general results of Kay and his
colleagues, and they challenge the boundary-salience hypothesis
of Roberson et al.

Evolutionary Sequence. Berlin and Kay (2) speculated that color
terminology within each language might have evolved over
human history from primitive color lexicons that had only two
basic color terms (for light�warm and dark�cool) to color lexi-
cons of technologically advanced cultures that have 11 basic
color terms. Can our results address the principle of an evolu-
tionary sequence? This problem is complex because the WCS is
a snapshot of the color terms used at the end of the 20th century
by these particular 110 world languages. If we were lucky, we
might find the color-naming patterns associated with each step
of the sequence. But if color terms from the earliest steps along
the way have become extinct, we would only see suggestive
evidence of their previous existence.

At the optimum level of 8 categories, our k-means analysis did
not show statistically significant evidence of all of the composite
categories predicted by the evolutionary sequence. On the
positive side, there was a significant GRUE cluster along with
GREEN and BLUE, and we found a YELLOW-OR-ORANGE
category that is not divided (yet?) into YELLOW and OR-
ANGE. But on the negative side, there was no COOL cluster that
included GRUE and PURPLE, and no WARM cluster that
included RED, PINK, and YELLOW-OR-ORANGE, nor do
we find the composite RED-OR-PINK.

It is tempting to view the cluster analysis tree shown in Fig. 2
as a recapitulation of color term evolution from ancient color-
naming systems because it exhibits a hierarchical structure
similar to that required by most versions of the evolutionary
sequence hypothesis, and the tree closely mirrors the associa-
tions observed subjectively by Berlin, Kay, and coworkers (e.g.,
ref. 14). However, the WCS cannot reveal time-dependent
processes without certain additional assumptions because it
reflects the statistics of color-naming patterns at only one point

in history. What the cluster analysis tree does clearly show is that
the statistics of WCS color naming favor certain, English-like
associations (e.g., red, pink, yellow, and orange) over others (e.g.,
red, brown, and green) when we restrict the number of clusters
that the k-means procedure has to work with. The existence of
English-like favored associations provides additional support for
universal constraints on color naming. We do not, however,
believe that our analysis can be used to deduce a particular
evolutionary sequence or to deduce whether the same sequence
should be applied to all languages.

How does color space come to be partitioned lexically ac-
cording to the set of universal constraints we have observed?
Certain color distinctions are apparently innate because they can
be demonstrated in infants who are too young to speak any
language (15, 16). Presumably, at least some color categories are
the result of the evolutionary interaction between the visual
nervous system and the natural environment, without any sig-
nificant contribution of culture. However, we are far from any
full understanding of how this interaction occurs. Color theorists
have developed color-opponent theory as a possible physiolog-
ical basis of the Hering primaries. However, even if color-
opponent theory were a correct model of color appearance (but
see ref. 17), we still have no physiological theory explaining why
some secondary basic color terms do exist (gray, pink, orange,
and purple) whereas others do not (light green, for example).
However, the absence of a physiological explanation for these
colors at this time does not mean that none will ever be found.
We believe that our analyses sharpen the questions that need to
be addressed by future theories of color naming.

Methods
Cluster Analysis. The 320 vector elements corresponding to the
chips assigned a given name by an informant were assigned a
value of 1; otherwise, they were assigned a value of 0 (see Fig.
1b). Thus, each chromatic chip was treated as an independent
color-naming dimension in a 320-dimension naming space, and
each color-naming pattern corresponded to a point in this space.
We encoded 14,236 chromatic color-naming patterns from the
2,616 informants included in the WCS. The resulting vectors
were transformed so that the elements of each vector had zero
mean and unit variance. These vectors were contained in the
matrix Si,j, where i (i � 1. . . 14,236) corresponded to a particular
color-naming vector, and j (j � 1. . . 320) corresponded to a
chromatic chip in the WCS color chart.

Color-naming vectors were assigned to clusters by using k-means
cluster analysis [Matlab 7.0; The MathWorks, Inc., Natick, MA
(refs. 18–20)]. This analysis is an iterative technique that partitioned
the color-naming patterns, Si,* (rows in the matrix Si,j), according to
their ‘‘nearness’’ to K cluster means, Ck,*, where nearness was
specified by the dissimilarity, d(x, y), calculated as 1 � the Pearson
correlation between vectors x and y:

ki � arg min (d�Si,*, Ck,*))
k��1. . .K	 . [1]

The cluster means, Ck,*, were the means of all vectors assigned
to each cluster, k, normalized to zero-mean, unit variance.

Initially, the Ck,* were randomly assigned vectors in color-
naming space. Thereafter, the k-means procedure iteratively
partitioned the color-naming vectors among the K clusters,
assigning each vector to the nearest Ck,* (Eq. 1), then recalcu-
lating cluster means if cluster membership changed from the
previous iteration. Eventually, no change in any cluster mem-
bership occurred, and the k-means algorithm terminated. In this
way, the k-means algorithm minimized the total within-cluster
dissimilarity among all 14,236 color-naming vectors. K-means
techniques do not guarantee a global minimum in the total
within-cluster dissimilarity. We are confident, however, that we
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achieved or were close to a global minimum because we repeated
each analysis in two blocks of 100 iterations using randomly
initialized Ck,* in each iteration, and we found no statistically
significant differences in minima obtained from the two blocks.

Gap Analysis. We calculated the gap values plotted on the
ordinate of Fig. 3 as follows:

gap(K) � En
 log (W*k�] � log(WK), [2]

where W is proportional to the total, across all clusters, of the
sums of within-cluster, pairwise dissimilarities between cluster
members. W and W* refer, respectively, to actual and reference
distributions, and En [log(W*k)] indicates expected value. We
created reference distributions by rotating the color-naming
patterns of each WCS informant by a random integral number
of chips in the hue�chroma plane of the Munsell system and then
by projecting them back into the coordinate frame of the WCS
color chart (for a similar approach, see ref. 6). We calculated
gap(K) for 11 different numbers of clusters (K � 2. . . 12). In each
case, log(W*) (see Eq. 2) was obtained from 20 reference
distributions obtained by sampling, with replacement, from our
database of uniformly distributed color-naming vectors. We
used the variation of gap(K) obtained from these 20 samples to

calculate sek, the standard error of gap(K). The optimal number
of clusters, Kbest, is defined as the minimum number of clusters
such that gap(k) � gap(K � 1) � sek�1.

Concordance Analysis. We defined ‘‘concordance’’ in the following
way. Let nl,i,j represent the number of times that term j is used
among s informants of language l to name the ith chip in the WCS
color chart. Then, concordance cl,i is expressed as:

cl,i � arg max (nl,i, j)�s l

j��1. . .J	
. [3]

As an example of this calculation, suppose that of 25 English
speakers, 15 name a particular WCS chip red, whereas 5 call the
same chip scarlet, and another 5 say crimson. The concordance
value for this chip is arg max({15,5,5})�25 � 15�25 � 0.6. Mean
concordance for chip i was calculated by averaging cl,i across l,
the 110 WCS languages. The grand mean concordance was the
average concordance across all chips.
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